آرشیو

جدیدترین ها







  • 0
  • 604

معرفی نرم افزار PV Elite


فروردین 25 1403







  • 0
  • 412

مهندسین برتر عمران


آبان 28 1402



















  • 0
  • 580

چت GPT در مدیریت انرژی


خرداد 18 1402

  • 0
  • 1058

آینده مهندسی با چت GPT


خرداد 17 1402




  • 0
  • 587

هوش مصنوعی در تولید آلیاژهای آنتروپی بالا

                                  ...


اردیبهشت 25 1402


  • 0
  • 527

استراتژیSTP  در بازاریابی!


اردیبهشت 18 1402


  • 0
  • 671

آشنایی با کارگاه کامپوزیت


اردیبهشت 14 1402









  • 0
  • 557

سیگنال دیجیتال در MATLAB


اسفند 11 1401


  • 0
  • 630

شبکه عصبی در MATLAB


اسفند 08 1401

  • 0
  • 665

متلب و کاربردهای آن


اسفند 07 1401

  • 0
  • 1440

روش های سنتز نانومواد


بهمن 23 1401











  • 0
  • 567

اساس کار چیلرها


مهر 23 1401
























  • 0
  • 983

آیا کارآفرین شدن سخت است؟


اردیبهشت 14 1401





تگ ها

کاربرد هوش مصنوعی در مهندسی مواد

کاربرد هوش مصنوعی در مهندسی مواد

برخی از زمینه‌های کلیدی کاربردها در به کارگیری تکنیک‌های هوش مصنوعی در مهندسی مواد عبارتند از: توسعه مجموعه‌های داده‌ای تنظیم شده و متنوع، انتخاب نمایش مؤثر برای مواد، طراحی معکوس مواد، یکپارچه‌سازی آزمایش‌ها و تئوری مستقل، و انتخاب الگوریتم یا جریان کار مناسب.

چگونه از هوش مصنوعی در مهندسی مواد استفاده می شود؟

هوش مصنوعی در مهندسی مواد به شرکت‌های معدنی و فلزات در سراسر جهان کمک می‌کند تا از هوش مصنوعی و تجزیه و تحلیل پیشرفته برای ایجاد استراتژی‌ها، مقیاس‌بندی عملکرد عملیاتی و افزایش بهره‌وری برای هدایت نوآوری‌هایی که تغییرات مهم را ایجاد می‌کنند، استفاده کنند.

کشف هوش مصنوعی در مهندسی مواد برای چیست؟

هوش مصنوعی به محققان کمک می کند تا خواص فیزیکی و شیمیایی مواد را بهتر درک کنند. رشته تحصیلی که علم مواد محاسباتی یا علم مواد محاسباتی نیز نامیده می شود، روشی برای آموزش رایانه ها برای انجام وظایفی است که انسان می تواند با آموزش محدود انجام دهد. هوش مصنوعی از طریق یادگیری ماشینی (ML) می‌تواند الگوریتم‌هایی را در اختیار سازمان‌ها قرار دهد که قادر به تشخیص اشتباهات و فرمول‌بندی راه‌حل‌هایی برای بهبود عملکردشان هستند. مهندسان می توانند از داده های بزرگ و هوش مصنوعی برای تسهیل پروژه های شهری در مقیاس بزرگ استفاده کنند.

وظیفه هوش مصنوعی در مهندسی مواد چیست؟

مهندسی هوش مصنوعی زمینه ای از تحقیق و عمل است که اصول مهندسی سیستم، مهندسی نرم افزار، علوم کامپیوتر و طراحی انسان محور را برای ایجاد سیستم های هوش مصنوعی مطابق با نیازهای انسان برای نتایج ماموریت ترکیب می کند. هوش مصنوعی (AI) را می توان در داده های تولید به کار برد تا پیش بینی خرابی و برنامه ریزی تعمیر و نگهداری را بهبود بخشد. این امر منجر به هزینه کمتر تعمیر و نگهداری برای خطوط تولید می شود. بسیاری از کاربردها و مزایای هوش مصنوعی در تولید امکان پذیر است، از جمله پیش بینی دقیق تر تقاضا و ضایعات مواد کمتر.

برخی از زمینه‌های کلیدی کاربردها در به کارگیری تکنیک‌های هوش مصنوعی در مهندسی مواد عبارتند از: توسعه مجموعه‌های داده‌ای به خوبی تنظیم شده و متنوع، انتخاب نمایش مؤثر برای مواد، طراحی معکوس مواد، یکپارچه‌سازی آزمایش‌ها و تئوری مستقل، و انتخاب الگوریتم/جریان کار مناسب. ایده گنجاندن مدل‌های مبتنی بر فیزیک در چارچوب هوش مصنوعی نیز جذاب است. در نهایت، تعیین کمیت عدم قطعیت در پیش‌بینی‌های مبتنی بر هوش مصنوعی برای خواص مواد و مسائل مربوط به ساخت زیرساخت برای انتشار دانش هوش مصنوعی برای موفقیت‌آمیز کردن تحقیقات مبتنی بر هوش مصنوعی از اهمیت بالایی برخوردار است. این کارگاه برای پوشش تمامی چالش های ذکر شده در بالا در نظر گرفته شده است. برای اینکه کارگاه تا حد امکان مؤثر باشد، ما قصد داریم عمدتاً روی مواد معدنی حالت جامد تمرکز کنیم، اما محدود به آن نیستیم. در سال‌های اخیر، تعداد زیادی از داده‌های آموزشی، قدرت محاسباتی بهبود یافته و الگوریتم‌های پیشرفته یادگیری عمیق برای کاربرد گسترده هوش مصنوعی، از جمله تحقیقات مواد مفید هستند. روش سنتی آزمون و خطا برای مطالعه مواد ناکارآمد و زمان بر است. بنابراین، هوش مصنوعی در مهندسی مواد، به‌ویژه یادگیری ماشینی، می‌تواند با یادگیری قوانین از مجموعه داده‌ها و ساخت مدل‌هایی برای پیش‌بینی، روند را تسریع بخشد. این کاملاً متفاوت از شیمی محاسباتی است که در آن رایانه فقط یک ماشین حساب است که از فرمول های کدگذاری شده ای که توسط متخصصان انسانی ارائه شده است استفاده می کند. در اینجا، کاربرد هوش مصنوعی در نوآوری مواد، از جمله طراحی مواد، پیش‌بینی عملکرد، و سنتز بررسی می‌شود. جزئیات تحقق تکنیک‌های هوش مصنوعی و مزایای آن نسبت به روش‌های مرسوم در این برنامه‌ها مورد تاکید قرار گرفته است. در نهایت، جهت توسعه آینده هوش مصنوعی از هر دو جنبه الگوریتم و زیرساخت توضیح داده شده است.

هوش مصنوعی در مهندسی مواد

ادغام علم مواد و هوش مصنوعی در مهندسی مواد

از عصر پارینه سنگی تا چهارمین انقلاب صنعتی آینده، میلیون‌ها سال تاریخ بشر عمدتاً با مواد مشخص شده است. علم مواد عمدتاً به بررسی رابطه بین ساختار، فرآیند، خواص و کاربرد مواد است. کشف مواد جدید نقش بیشتری در ارتقای توسعه جامعه بشری خواهد داشت. پس از چندین قرن توسعه، حجم زیادی از داده ها در زمینه علم مواد انباشته شده است. با این حال، محدودیت های ذاتی توانایی شناختی انسان، جذب و پردازش ادبیات و داده های عظیم تولید شده هر روز را برای انسان دشوار می کند. فقط بخش کوچکی از داده ها (در مقایسه با کل حجم داده ها) را می توان در یک زمینه فرعی خاص تجزیه و تحلیل کرد. تحقیقات مواد فعلی عمدتاً یک "روش آزمون و خطا" است که بر اساس تعداد زیادی آزمایش هدایت شده توسط تجربه و تعداد کمی از محاسبات شبیه سازی کامپیوتری به عنوان مکمل است که نیروی انسانی، زمان، مواد و مواد زیادی مصرف می کند. منابع مالی. حجم عظیمی از داده های اطلاعات مادی همیشه در پایگاه داده ساکت هستند یا کم کم مورد استفاده قرار می گیرند. بنابراین، یافتن یک روش تحقیق جدید برای تسریع در نوآوری مواد ضروری است.

یادگیری ماشین (ML) یکی از شاخه‌های مهم هوش مصنوعی در مهندسی مواد: در سال‌های اخیر به سرعت در حال توسعه است و همچنین امیدوارکننده‌ترین کاربرد هوش مصنوعی در تحقیقات مهندسی مواد است. بخش بعدی دانش پایه ML را معرفی می کند، که پایه و اساس معرفی کاربردهای تحقیق مواد هوش مصنوعی را در متن بعدی ایجاد می کند.

ML توانایی یک کامپیوتر را برای آموزش بر روی مجموعه ای از داده ها و سپس یافتن قوانین یا دانش زیربنایی آن داده ها را توصیف می کند. به طور خاص، ML عمدتاً به چهار مرحله تقسیم می شود: جمع آوری داده ها، نمایش داده ها، انتخاب الگوریتم و بهینه سازی مدل.

ML نوعی الگوریتم مبتنی بر داده است و داده ها را می توان با شبیه سازی (مانند نظریه تابعی چگالی [DFT] و دینامیک مولکولی [MDs])، آزمایش ها و پایگاه داده آنلاین به دست آورد. بسیاری از داده ها در زمینه هوش مصنوعی در مهندسی مواد به دلیل محدودیت محیط و شرایط آزمایشی گم شده، تکراری و ناسازگار هستند. بنابراین، پاکسازی داده‌ها، برای شناسایی و تصحیح خطاهای مختلف در داده‌های اصلی، کاملاً ضروری می‌شود. برای مقادیر گمشده، میانگین، حداقل یا سایر مقادیر آماری برای پر کردن جای خالی در صورت مناسب استفاده می‌شود. برای مقادیر تکراری، ایده اصلی حذف رکوردهای تکراری مرتب سازی بر اساس مقادیر ویژگی و ادغام رکوردها با مقدار یکسان است. الگوریتم های مرتبط شامل الگوریتم صف اولویت، روش همسایگی مرتب شده و غیره است. چنین روش‌هایی در داده‌های پروسکایت با ادغام ورودی‌های مختلف در پایگاه داده پروژه مواد و پایگاه داده ساختار بلوری معدنی استفاده شده است. داده ها الزامات را برآورده می کنند. داده های فراتر از محدوده طبیعی یا ویژگی های متضاد به طور مناسب حذف خواهند شد. پس از تمیز کردن، داده ها می توانند برای نمایش داده ها استفاده شوند.

جمع بندی

در سال های اخیر، هوش مصنوعی در مهندسی مواد و زمینه های مخنلف به کار گرفته شده است، و تحقیقات ML در زمینه مواد به سرعت در حال توسعه است، به ویژه از این نظر که می تواند مواد جدید را سنتز کند و سنتزهای شیمیایی مختلف را پیش بینی کند. فرآیند تحقیق برای شیمی محاسباتی و علم مواد به نسل سوم به روز شده است. نسل اول به محاسبه «عملکرد سازه» اشاره دارد که عمدتاً از الگوریتم بهینه‌سازی محلی برای پیش‌بینی عملکرد مواد از سازه بهره می‌برد. دومی «پیش‌ بینی ساختار کریستالی» است که عمدتاً از الگوریتم بهینه‌سازی جهانی برای پیش‌بینی ساختار و عملکرد از ترکیب عنصر استفاده می‌کند. نسل سوم که به عنوان «طراحی مبتنی بر آمار» شناخته می‌شود، از الگوریتم‌های ML برای پیش ‌بینی ترکیب، ساختار و عملکرد عناصر از داده‌های فیزیکی و شیمیایی استفاده می‌کند. - مواد عملکردی و پارامترهای مدل کاملاً با شرایط عملی مانند فاز مخلوط یا مرز دانه سازگار نیست. 

نویسنده: مصطفی عینعلی، کارشناس دپارتمان مواد و متالورژی گروه آموزشی پارس پژوهان

 

 

 

 

اشتراک گذاری

نظرات (0)

  نظرات

هیچ نظری ثبت نشده است.